翻訳と辞書
Words near each other
・ Kleinwelka
・ Kleinwelsbach
・ Kleinwort
・ Kleinwort baronets
・ Kleinwort Benson
・ Kleinwort Benson Ltd v Birmingham City Council
・ Kleinzee
・ Kleinzee Airport
・ Kleinzeit
・ Kleinzell
・ Kleinzell im Mühlkreis
・ Klein–Goldberger model
・ Klein–Gordon equation
・ Klein–Nishina formula
・ Kleis Site
Kleisli category
・ Kleisma
・ Kleisoreia
・ Kleisoura
・ Kleisoura (Byzantine district)
・ Kleisoura, Kastoria
・ Kleisoura, Larissa
・ Kleist
・ Kleist Museum
・ Kleist Prize
・ Kleist Sykes
・ Kleist Theater
・ Kleista Ta Stomata
・ Kleisti
・ Kleistos


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kleisli category : ウィキペディア英語版
Kleisli category
In category theory, a Kleisli category is a category naturally associated to any monad ''T''. It is equivalent to the category of free ''T''-algebras. The Kleisli category is one of two extremal solutions to the question ''Does every monad arise from an adjunction?'' The other extremal solution is the Eilenberg–Moore category. Kleisli categories are named for the mathematician Heinrich Kleisli.
==Formal definition==

Let〈''T'', η, μ〉be a monad over a category ''C''. The Kleisli category of ''C'' is the category ''C''''T'' whose objects and morphisms are given by
:\begin\mathrm() &= \mathrm(_(X,Y) &= \mathrm_
That is, every morphism ''f: X → T Y'' in ''C'' (with codomain ''TY'') can also be regarded as a morphism in ''C''''T'' (but with codomain ''Y''). Composition of morphisms in ''C''''T'' is given by
:g\circ_T f = \mu_Z \circ Tg \circ f
where ''f: X → T Y'' and ''g: Y → T Z''. The identity morphism is given by the monad unit η:
:\mathrm_X = \eta_X.
An alternative way of writing this, which clarifies the category in which each object lives, is used by Mac Lane.〔Mac Lane(1998) p.147〕 We use very slightly different notation for this presentation. Given the same monad and category C as above, we associate with each object X in C a new object X_T, and for each morphism f:X\to TY in C a morphism f^
*:X_T\to Y_T. Together, these objects and morphisms form our category C_T, where we define
:g^
*\circ_T f^
* = (\mu_Z \circ Tg \circ f)^
*.
Then the identity morphism in C_T is
:\mathrm_ = (\eta_X)^
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kleisli category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.